Conformational selection or induced fit? A critical appraisal of the kinetic mechanism.

نویسندگان

  • Austin D Vogt
  • Enrico Di Cera
چکیده

For almost five decades, two competing mechanisms of ligand recognition, conformational selection and induced fit, have dominated our interpretation of ligand binding in biological macromolecules. When binding-dissociation events are fast compared to conformational transitions, the rate of approach to equilibrium, k(obs), becomes diagnostic of conformational selection or induced fit based on whether it decreases or increases, respectively, with the ligand concentration, [L]. However, this simple conclusion based on the rapid equilibrium approximation is not valid in general. Here we show that conformational selection is associated with a rich repertoire of kinetic properties, with k(obs) decreasing or increasing with [L] depending on the relative magnitude of the rate of ligand dissociation, k(off), and the rate of conformational isomerization, k(r). We prove that, even for the simplest two-step mechanism of ligand binding, a decrease in k(obs) with [L] is unequivocal evidence of conformational selection, but an increase in k(obs) with [L] is not unequivocal evidence of induced fit. Ligand binding to glucokinase, thrombin, and its precursor prethrombin-2 are used as relevant examples. We conclude that conformational selection as a mechanism for a ligand binding to its target may be far more common than currently believed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational selection is a dominant mechanism of ligand binding.

Molecular recognition in biological macromolecules is achieved by binding interactions coupled to conformational transitions that precede or follow the binding step, two limiting mechanisms known as conformational selection and induced fit, respectively. Sorting out the contribution of these mechanisms to any binding interaction remains a challenging task of general interest in biochemistry. He...

متن کامل

Conformational selection or induced fit? New insights from old principles.

A long standing debate in biochemistry is to determine whether the conformational changes observed during biomolecular interactions proceed through conformational selection (of preexisting isoforms) or induced fit (ligand-induced 3D reshaping). The latter mechanism had been invoked in certain circumstances, for example to explain the non-Michaelian activity of monomeric enzymes like glucokinase...

متن کامل

Relative contributions of conformational selection and induced fit

A long standing debate in biochemistry is to determine whether the conformational changes observed during biomolecular interactions proceed through conformational selection (of preexisting isoforms) or induced fit (ligand-induced 3D reshaping). The latter mechanism had been invoked in certain circumstances, for example to explain the non-Michaelian activity of monomeric enzymes like glucokinase...

متن کامل

Distinguishing induced fit from conformational selection.

The interactions between proteins and ligands often involve a conformational change in the protein. This conformational change can occur before (conformational selection) or after (induced fit) the association with ligand. It is often very difficult to distinguish induced fit from conformational selection when hyperbolic binding kinetics are observed. In light of a recent paper in this journal ...

متن کامل

Conformational selection or induced fit: a flux description of reaction mechanism.

The mechanism of ligand binding coupled to conformational changes in macromolecules has recently attracted considerable interest. The 2 limiting cases are the "induced fit" mechanism (binding first) or "conformational selection" (conformational change first). Described here are the criteria by which the sequence of events can be determined quantitatively. The relative importance of the 2 pathwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 51 30  شماره 

صفحات  -

تاریخ انتشار 2012